Solving systems of polynomial inequalities in subexponential time
نویسندگان
چکیده
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSolving Systems of Polynomial
Current geometric and solid modeling systems use semi-algebraic sets for deening the boundaries of solid objects, curves and surfaces, geometric constraints with mating relationship in a mechanical assembly, physical contacts between objects, collision detection. It turns out that performing many of the geometric operations on the solid boundaries or interacting with geometric constraints is re...
متن کاملPlanar k-Path in Subexponential Time and Polynomial Space
In the k-Path problem we are given an n-vertex graph G together with an integer k and asked whether G contains a path of length k as a subgraph. We give the first subexponential time, polynomial space parameterized algorithm for k-Path on planar graphs, and more generally, on H-minor-free graphs. The running time of our algorithm is O(2 √ k log2 n).
متن کاملSolving parametric polynomial systems
We present a new algorithm for solving basic parametric constructible or semi-algebraic systems like C = {x ∈ C, p1(x) = 0, , ps(x) = 0, f1(x) 0, , fl(x) 0} or S = {x ∈ R, p1(x) = 0, , ps(x) = 0, f1(x)> 0, , fl(x)> 0}, where pi, fi ∈Q[U , X], U = [U1, , Ud] is the set of parameters and X = [Xd+1, , Xn] the set of unknowns. If ΠU denotes the canonical projection onto the parameter’s space, solvi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 1988
ISSN: 0747-7171
DOI: 10.1016/s0747-7171(88)80005-1